300

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Wang, D., Zhang, J., Zuo, T., Zhao, M., Lisch, D., & Peterson, T., (2020). Small RNA-

mediated de novo silencing of Ac/ds transposons is initiated by alternative transposition in

maize. Genetics, 215(2), 393–406. https://doi.org/10.1534/genetics.120.303264.

Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B., (2014). Improved

tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum

aestivum L.) var. vinjett. Journal of Experimental Botany, 65(22), 6441–6456. https://doi.

org/10.1093/jxb/eru362.

Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., & Li, Y., (2005). MicroRNAidentification

based on sequence and structure alignment. Bioinformatics, 21(18), 3610–3614. https://doi.

org/10.1093/bioinformatics/bti562.

Wani, S. H., & Gosal, S. S., (2010). Genetic engineering for osmotic stress tolerance in plants-

role of proline. IUP Journal of Genetics & Evolution, 3(4), 14–25.

Wani, S. H., Singh, N., Devi, T. R., Haribhushan, A., Jeberson, S., & Malik, C., (2013).

Engineering abiotic stress tolerance in plants: Extricating regulatory gene complex. In:

Malik, C. P., Sanghera, G. S., & Wani, S. H., (eds.), MD Conventional and Non-Conventional

Interventions in Crop Improvement (pp. 1–21). Publications PVT LTD: New Delhi, India.

Wassenegger, M., Heimes, S., Riedel, L., & Sanger, H. L., (1994). RNA-directed de novo

methylation of genomic sequences in plants. Cell, 76(3), 567–576.

Willmann, M. R., & Poethig, R. S., (2007). Conservation and evolution of miRNA regulatory

programs in plant development. Current Opinion in Plant Biology, 10(5), 503–511. https://

doi.org/10.1016/j.pbi.2007.07.004.

Woodrow, P., Pontecorvo, G., Ciarmiello, L. F., Annunziata, M. G., Fuggi, A., & Carillo,

P., (2012). Transcription factors and genes in abiotic stress. In: Venkateswarlu, B.,

Shanker, A., Shanker, C., & Maheswari, M., (eds.), Crop Stress and Its Management:

Perspectives

and

Strategies

(pp.

317–357).

Springer:

Dordrecht.

https://doi.

org/10.1007/978-94-007-2220-0_9.

Wu, H., Li, B., Iwakawa, H. O., Pan, Y., Tang, X., Ling-Hu, Q., Liu, Y., et al., (2020). Plant

22-nt siRNAs mediate translational repression and stress adaptation. Nature, 581(7806),

89–93. https://doi.org/10.1038/s41586-020-2231-y.

Wu, Y., Wei, B., Liu, H., Li, T., & Rayner, S., (2011). MiRPara: A SVM-based software

tool for prediction of most probable microRNA coding regions in genome scale sequences.

BMC Bioinformatics, 12(1), 1–14. https://doi.org/10.1186/1471-2105-12-107.

Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., & Zhang, M., (2012).

OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers,

early flowering and less tolerance to salt and drought in rice. PloS One, 7(1), e30039.

https://doi.org/10.1371/journal.pone.0030039.

Xie, F., & Zhang, B., (2010). Target-align: A tool for plant microRNA target identification.

Bioinformatics, 26(23), 3002, 3003. https://doi.org/10.1093/bioinformatics/btq568.

Xie, K., Minkenberg, B., & Yang, Y., (2015). Boosting CRISPR/Cas9 multiplex editing

capability with the endogenous tRNA-processing system. Proceedings of the National

Academy of Sciences, 112(11), 3570–3575. https://doi.org/10.1073/pnas.1420294112.

Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., & Sun, Q., (2010). Diverse set of

microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum

aestivum L.). BMC Plant Biology, 10(1), 1–11. https://doi.org/10.1186/1471-2229-10-123.

Xu, J., Chen, Q., Liu, P., Jia, W., Chen, Z., & Xu, Z., (2019). Integration of mRNA and

miRNA analysis reveals the molecular mechanism underlying salt and alkali stress